Improvements to the 2012 Evaluation of the Western Canadian BlueSky Smoke **Forecasting System** Alberta Government of Alberta

Amy Thi¹, David Lyder²

1. Engineering Co-op Program, University of Alberta; 2. Alberta Environment and Sustainable Resource Development, Government of Alberta (Corresponding author: David.Lyder@gov.ab.ca)

Background

The BlueSky Forecasting System aims to predict PM2 5 concentrations in the air due to forest fire activity. Currently, the Western Canadian section is being evaluated against observed PM_{2.5} ambient concentrations in several sites across Alberta. Past methods of evaluation include qualitative analyses of the BlueSky time series against the observed ambient time series and visual comparisons of Google Earth smoke plume animations and MODIS satellite images. To combat the obstacle of other sources contributing to the observed PM_{2.5} levels, the ambient data was manipulated to remove non-smoke components by subtracting a polynomial fit of the average PM_{2.5} levels from previous years; another approach included adding the

average to BlueSky instead. Conclusions drawn from these past methods illustrated the need for ground information as well as the inclusion of carry over smoke in the model processing.

Ambient data: Hourly PM25 concentration was collected from the Casa Data Warehouse http://www.casadata.org

BlueSky Data: http://www.bcairguality.ca/ bluesky/data/

http://www.bcairquality.ca/bluesky/west/index.html

BS

Pearson

MB

NMB

RMSE

NME

BS+Bckgrnd

0 208471 0 21157016

-4.064421 0.7503635

-65.17435 12.0323287

12.628558 12.5691327 105.18735 91.544703

Objective

The objective of this project was to investigate post processing techniques to further improve the Western Canadian BlueSky Forecasting System during the 2012 fire season (from April to October). Some of the attempted methods include using the Kalman Filter then applying smoothing techniques such as windowed spline, sliding spline, moving average, and least squares fitting.

Method

Learning from past evaluations, hourly averages were calculated by aligning observed ambient data from previous years on the Canadian Victoria Day as a reference point to account for variability in anthropogenic activity during different days of the week. The site-specific average background concentrations were then added to BlueSky data for a new series of improved forecast values.

background values, there are super hourly trends in the ambient data e.g. increase

Although the Pearson Correlation remains poor after adding the average

of PM_{2 F} from car emissions during the day, that should match the BlueSky+Average Background values. The Kalman filter utilizes this information to produce a more statistically optimal estimate. Applying the Kalman filter for the 1 hour forecast greatly increased the Pearson correlation in many sites (for the Edmonton Central site: from 0.11 to 0.89!).

Method Continued

BlueSky+Average Background time series, this is visually

much more similar to the observed ambient

Problems with the Kalman Filter: Increased amplitude

Kalman Filter

Degradation of correlation with

increasing forecast hours; from the operational perspective, a reasonable forecast of at least 6 hours is desired

						Amp vs. 8	arman					
Site	Stat	Amb vs BS	Amb vs BS+bckgrnd	1hr	3hr	6hr	9hr	12hr	15hr	18hr	21hr	24hr
Anzac	Pearson	0.20847	1 0.211570156	0.56958	0.40666	0.37833	0.32107	0.29386	0.25474	0.22398	0.21033	0.2234
	MB	-4.06442	1 0.750363504	0.74108	1.71485	2.38397	3.32437	3.87422	3.9282	4.06778	3.6988	3.3947.
	NMB	-65.1743	5 12.03232865	12.3846	28.6528	39.8268	55.5147	64.6873	65.5641	67.8689	61.6937	56.60
	RMSE	12.62855	8 12.5691327	13.3594	18.7288	19.6382	27.5135	35.8917	37.3706	38.7731	28.5193	26.910
	NME	105.1873	5 91.54470298	43.1844	78.0898	102.448	125.985	137.698	140.126	143.029	136.252	130.91
			Figure 4. Top: ambient with degradation of the average of	Table of the Kali of correla	f the si man pi ation a l comp	tatistic redicte is the arisor	al con d valu predic betw	nparis Ie. Lefi tion h een th	on bet t: Scati our inc le obse	ween ter plo crease	the ob ot show s. Bott ambie	oserve ving t com: T
r 9hr 12hr 15 Forecast Hour	• 18hr 21	hr 24hr	Kalman predi location, pop	cted valuation,	ues be and ba	tween seline	15 ur trend	ban ar s.	nd 9 ru	ral site	es, bas	sed or
e 9hr 12hr 15 Forecast Hour	* 18hr 21	the 24he	Kalman predi location, pop	cted valuation,	ues be and ba	tween aseline Amb vs. K	15 ur trend	ban ar s.	nd 9 ru	ral site	es, bas	sed or
e 9hr 12hr 15h Forecast Hour Average	* 18hr 21 Stat	the 24he	Amb vs BS+bckgmd	cted valuation,	ues be and ba	tween aseline Amb vs. K 6hr	alman	ban ar Is.	nd 9 ru 15hr	ral site	es, bas 21hr	ed or
e 9hr 12hr 15 Forecast Hour Average Urban Sites (15)	er 18hr 21 Stat Pearson	the 24he Amb vs BS 0.1472809	Kalman predi location, pop	1hr 0.73973	ues be and ba 3hr 0.46515	Amb vs. K 6hr 0.35116	alman 9hr 0.29211	ban ar s. 12hr 0.28989	15hr 0.25855	ral site	21hr 0.21721	24hr 0.2117
e 9he 12he 15h Forecast Hour Average Urban Sites (15)	* 18hr 21 Stat Pearson MB	Amb vs BS 0.1472809 -7.655552	Amb vs B5+bckgmd 0.130417349 -0.276781762	ted valuation,	ues be and ba 3hr 0.46515 1.18472	tween aseline Amb vs. K 6hr 0.35116 1.82898	alman 9hr 2.09393	ban ar s. 12hr 0.28989 2.0932	15hr 0.25855 2.06909	ral site 18hr 0.228 2.10796	21hr 0.21721 2.06815	24hr 0.2117 1.8857
9hr 12hr 15h Forecast Hour Average Urban Sites (15)	* 18hr 21 Stat Pearson MB NMB	Amb vs BS 0.1472809 -7.655552 -91.66541	Amb vs BS+bckgmd 0.130417349 -0.276781762 0.318151628	ted valuation,	ues be and ba 3hr 0.46515 1.18472 15.3763	Amb vs. K 6hr 0.35116 1.82898 24.0718	alman 9hr 0.29211 2.09393 27.189	ban ar s. 12hr 0.28989 2.0932 26.8141	15hr 0.25855 2.06909 26.4457	18hr 0.228 2.10796 26.9435	21hr 0.21721 2.06815 25.9969	24hr 0.2117i 1.8857i 23.89
9hr 12hr 15 Forecast Hour Average Urban Sites (15)	the 18hr 21 Stat Pearson MB NMB RMSE	Amb vs B5 0.1472809 -7.655552 -91.66541 14.408974	Amb vs BS+bokgmd 0.130417349 -0.276781762 0.318151628 13.01657197	1hr 0.73973 0.45246 5.90606 12.7087	and ba and ba 3hr 0.46515 1.18472 15.3763 25.9092	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428	alman 9hr 0.29211 2.09393 27.189 32.6005	ban ar s. 12hr 0.28989 2.0932 26.8141 31.7913	15hr 0.25855 2.06909 26.4457 27.4457	18hr 0.228 2.10796 26.9435 28.7177	21hr 0.21721 2.06815 25.9969 31.8753	24hr 0.2117 1.8857 23.89 26.567
e 9he 12he 15k Forecast Hour Average Urban Sites (15)	stat Pearson MB NMB RMSE NME	Amb vs B5 0.1472809 -7.655552 -91.66541 14.408974 98.120156	Amb vs B5+bckgmd 0.130417349 -0.276781762 0.318151628 13.01657197 78.23265797	Ihr 0.73973 0.45246 5.90606 12.7087 41.2294	3hr 0.46515 1.18472 15.3763 25.9092 67.054	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428 86.4034	alman 9hr 0.29211 2.09393 27.189 32.6005 94.243	ban ar is. 12hr 0.28989 2.0932 26.8141 31.7913 97.2162	15hr 0.25855 2.06909 26.4457 27.4457 99.5016	18hr 0.228 2.10796 26.9435 28.7177 101.517	21hr 0.21721 2.06815 25.9969 31.8753 100.012	24hr 0.2117 1.8857 23.89 26.567 98.28
Other 12ther 15th Forecast Houry Average Urban Sites (15) Rural Sites (9)	Stat Pearson MB NMB RMSE NME Pearson	Amb vs BS 0.1472809 -7.655552 -91.66541 14.408974 98.120156 0.189526	Amb vs 85+bckgmd 0.130417349 -0.276781762 0.318151628 13.01657197 0.156362982	1hr 0.73973 0.45246 5.90606 12.7087 41.2294 0.72807	ues be and ba 3hr 0.46515 1.18472 15.3763 25.9092 67.054 0.39322	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428 86.4034 0.35129	alman 9hr 0.29211 2.09393 27.189 32.6005 94.243 0.28679	ban ar ls. 12hr 0.28989 2.0932 26.8141 31.7913 97.2162 0.28619	15hr 0.25855 2.06909 26.4457 27.4457 99.5016 0.24447	18hr 0.228 2.10796 26.9435 28.7177 101.517 0.20626	21hr 0.21721 2.06815 25.9969 31.8753 100.012 0.21953	24hr 0.2117 1.8857 23.89 26.567 98.28 0.2248
Average Urban Sites (15)	Stat Pearson MB NMB RMSE NME Pearson MB	Amb vs BS 0.1472809 -7.655552 -91.66541 14.408974 98.120156 0.189526 -6.94651	Amb vs 85+bckgmd 0.130417349 -0.276781762 0.318151628 13.01657797 0.156362982 -0.061442785	1hr 0.73973 0.45246 5.90606 12.7087 41.2294 0.72807 0.46526	3hr 0.46515 1.18472 15.3763 25.9092 67.054 0.39322 1.25967	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428 86.4034 0.35129 1.89704	alman 9hr 0.29211 2.09393 27.189 32.6005 94.243 0.28679 2.20749	ban ar ls. 12hr 0.28989 2.0932 26.8141 31.7913 97.2162 0.28619 2.16597	15hr 0.25855 2.06909 26.4457 27.4457 99.5016 0.24447 2.03877	18hr 0.228 2.10796 26.9435 28.7177 101.517 0.20626 2.07106	21hr 0.21721 2.06815 25.9969 31.8753 100.012 0.21953 1.95113	24hr 0.2117/ 1.8857/ 23.89 26.567/ 98.28 0.2248 1.7448
Other 22hr 153 Prorecase Holer Average Urban Sites (15) Rural Sites (9)	* 18hr 21 Stat Pearson MB NMB NMB Pearson MB NMB	Amb vs BS 0.1472809 -7.655552 -91.66541 14.408974 98.120156 0.189526 -6.94651 -80.47976	Amb vs B5+bckgmd 0.130417349 -0.276781762 0.318151628 13.01657197 78.23265797 0.156362982 -0.016442785 1.057794286	1hr 0.73973 0.45246 5.90606 12.7087 41.2294 0.72807 0.46626 6.2826	3hr 0.46515 1.18472 15.3763 25.9092 67.054 0.39322 1.25967 16.5014	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428 86.4034 0.35129 1.89704 25.3861	15 uri trend 9hr 0.29211 2.09393 27.189 32.6005 94.243 0.28679 2.20749 28.5885	ban ar ls. 12hr 0.28989 2.0932 26.8141 31.7913 97.2162 0.28619 2.16597 27.5314	15hr 0.25855 2.06909 26.4457 27.4457 99.5016 0.24447 2.03877 26.2155	18hr 0.228 2.10796 26.9435 28.7177 101.517 0.20626 2.07106 26.7282	21hr 0.21721 2.06815 25.9969 31.8753 100.012 0.21953 1.95113 24.9558	24hr 0.2117i 1.8857i 23.89 26.567: 98.28 0.2248 1.7448 22.734
Oper 12/m 19 Porecast Hour Average Urban Sites (15) Rural Sites (9)	* 18hr 21 Stat Pearson MB NMB RMSE NME Pearson MB NMB RMSE	Amb vs BS 0.1472809 -7.655552 -91.66541 14.408974 98.120156 -6.94651 -80.47976 12.23188	Amb vs B5+bckgmd 0.130417349 0.276781762 0.318151628 13.01657197 0.2565982 0.061442785 1.057794285 12.01042815	1hr 0.73973 0.45246 5.90606 12.7087 41.2294 0.72807 0.46626 6.2826 14.1927	3hr 0.46515 1.18472 15.3763 25.9092 67.054 0.39322 1.25967 16.5014 30.8255	Amb vs. K 6hr 0.35116 1.82898 24.0718 33.8428 86.4034 0.35129 1.89704 25.3861 38.2829	15 uri trend 9hr 0.29211 2.09393 27.189 32.6005 94.243 0.28679 2.20749 28.5885 36.9293	ban ar is. 12hr 0.28989 2.0932 26.8141 31.7913 97.2162 0.28619 2.16597 27.5314 35.8556	15hr 0.25855 2.06909 26.4457 27.4457 99.5016 0.24447 2.03877 26.2155 27.9743	18hr 0.228 2.10796 26.9435 28.7177 101.517 0.20626 2.07106 26.7282 29.9481	21hr 0.21721 2.06815 25.9969 31.8753 100.012 0.21953 1.95113 24.9558 29.5218	24hr 0.2117 1.8857 26.567 98.28 0.2248 1.7448 22.734 24.372

Techniques used in attempt to smooth Kalman filtered values:

- 1. Windowed Spline on Kalman fitting a cubic equation to 4 hour periods of the Kalman filtered values
- 2. Sliding Spline on Kalman – fitting a cubic equation to sliding 4 hour periods of the Kalman filtered values
- 3. Moving Average of Kalman –using the average of Kalman filtered values over previous 4 hours as the desired hour's forecast value (also experimented with other hour averages as well)

Method Continued

- 4. Least Squares Fitting of Kalman (with different sized model sets)
 - The most promising method so far
 - Monte Carlo simulation with 100 and 1000 subsets to determine most representative term coefficients
 - The equation was then applied on the remaining validation set and compared to the observed ambient values

Ideal Result of Kalman filter

 $B = b \times -$

Results

This is still a work in progress and all the methods have only been applied to a few select sites up to date. Naturally, variations between different sites due to location and subset size are expected.

- Least squares fitted Kalman has highest correlation and least degradation with time
- Visually, the least squares manipulation successfully decreased the amplitude General trends in time series captured
- Depending on the application of BlueSky. the certainty of concentration magnitude may or may not be an issue. E.g. Alberta Health has a threshold concentration of 30 g/m³ PM_{2.5} representing the level of concern.

applied

Complications with the least squares fitting: possibility of over-smoothing and the forecast trends lagging behind by a few hours

least squares fitted and the raw 6 hour Kalman forecast against the observed ambient

Figure 6. Overlay of the 6 hour Kalman prediction with the observed ambient (top) compared to the overlay of the 6 hour least squares fitted Kalman prediction based on a 1000 value subset with the observed ambient (bottom).

Conclusion

An investigation of the possible post processing techniques to improve the 2012 Western Canadian BlueSky Forecasting System revealed many advantages and disadvantages in Kalman Filter and smoothing using spline, moving averages and least squares fitting. Further analysis is required determine whether these improvements hold for additional sites as well for other years of evaluation.